A Preliminary Study on the Robustness and Generalization of Role Sets for Semantic Role Labeling
نویسندگان
چکیده
Most Semantic Role Labeling (SRL) systems rely on available annotated corpora, being PropBank the most widely used corpus so far. Propbank role set is based on theory-neutral numbered arguments, which are linked to fine grained verb-dependant semantic roles through the verb framesets. Recently, thematic roles from the computational verb lexicon VerbNet have been suggested to be more adequate for generalization and portability of SRL systems, since they represent a compact set of verb-independent general roles widely used in linguistic theory. Such thematic roles could also put SRL systems closer to application needs. This paper presents a comparative study of the behavior of a state-of-theart SRL system on both role role sets based on the SemEval-2007 English dataset, which comprises the 50 most frequent verbs in PropBank.
منابع مشابه
Robustness and Generalization of Role Sets: PropBank vs. VerbNet
This paper presents an empirical study on the robustness and generalization of two alternative role sets for semantic role labeling: PropBank numbered roles and VerbNet thematic roles. By testing a state–of–the–art SRL system with the two alternative role annotations, we show that the PropBank role set is more robust to the lack of verb–specific semantic information and generalizes better to in...
متن کاملبرچسبزنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه
Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...
متن کاملبرچسبزنی خودکار نقشهای معنایی در جملات فارسی به کمک درختهای وابستگی
Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...
متن کاملA procedure for Web Service Selection Using WS-Policy Semantic Matching
In general, Policy-based approaches play an important role in the management of web services, for instance, in the choice of semantic web service and quality of services (QoS) in particular. The present research work illustrates a procedure for the web service selection among functionality similar web services based on WS-Policy semantic matching. In this study, the procedure of WS-Policy publi...
متن کاملتوسعه روش SL با ترتیب KBO برای اثبات خودکار پایانپذیری سیستم بازنویسی ترم - مقاله برگزیده هفدهمین کنفرانس ملی انجمن کامپیوتر ایران
The term rewriting systems (TRSs) is an abstract model of functional languages. The termination proving of TRSs is necessary for confirming accuracy of functional languages. The semantic labeling (SL) is a complete method for proving termination. The semantic part of SL is given by a quasi-model of the rewrite rules. The most power of SL is related to infinite models that is difficult f...
متن کامل